The Traffic Amplifiers Great Hunt:

Helping Network Operators to Bring Down DDoS Sources

Pierre Lorinquer, Florian Maury
November 19, 2015

French Network and Information Security Agency

ANSSI:

- national authority for the defence and security of information systems
- ▶ main missions: Prevention, Defence, Information
 - ► tranversal actions covering French governmental organizations, critical operators and the general public
 - ▶ guidance provider on network security topics (<u>DNS</u>, <u>BGP</u>, <u>DDoS</u> prevention...)
 - ▶ academic research, Internet Resilience Observatory in France, CVE...
 - coordinated response thanks to our CERT

Amplification DDoS Attack Reminder

Amplification Attack Principle

Threat: on IP networks, sender address can be spoofed

Some UDP-based protocols do not make up for it

Real IP: 192.0.2.66 Real IP: 198.51.100.42

Spoofed IP: 198.51.100.42

Attacks traits:

bandwidth-based or packet-based

Exploitable protocols:

- are unauthenticated or with well-known credentials
- must be widely deployed
- can be preloaded to improve amplification factor

Identifying the Amplifiers:

as easy as an Internet Sweep

Monitoring of a /22 IP address block shows that many hosts scan the Internet

Some are scanning projects:

- academic / research projects (University of Michigan, University of Washington, Ruhr University Bochum ...);
- well-known scanning projects (Shadowserver, Shodan, Rapid7, Open * Project).

Open * Projects Presentation

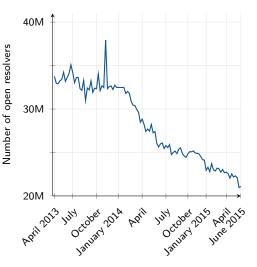
Four projects:

- Open (DNS) Resolver Project: http://www.openresolverproject.org/
- ► Open NTP Project: http://www.openntpproject.org/
- Open SNMP Project: http://www.opensnmpproject.org/
- ► Open **SSDP** Project: http://www.openssdpproject.org/

Project characteristics:

- powered by Jared Mauch (NTT)
- perform weekly scans of Internet address space
- provide raw scan results to researchers (thanks!)

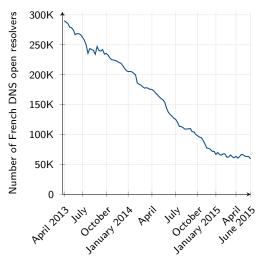
ANSSI Initiative Regarding These Data Sources


We:

- requested access to Open * Projects raw results
- analyzed data and focused on French ASes
- summarized information and alerted French network operators
- ▶ monitored the development, both worldwide and in France

Monitoring the Number of Traffic Amplifiers Per Protocol

Open Resolver Worldwide Count


Reduction by a 3^{rd} over the period

Very large DDoS use only hundred of thousands of nodes

Open DNS resolvers remain a significant threat

French Open Resolver Count

Reduction by $80\,\%$ over the period

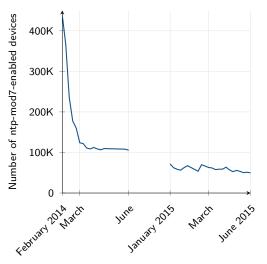
Slow trend: takes a lot of efforts/huge expenses to replace no longer supported devices

 $70\,\%$ of French open resolvers under one AS in 2013

Random Qname Attacks: an additional risk

Hosting open resolvers may cary DoS risks: random qname attack

One operator was targetted by this attack:

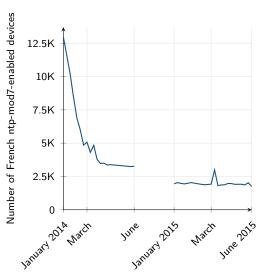

- had prepared in lab a countermeasure for the DDoS attack
- rolled it out for this incident
- firewall rule to drop incoming DNS traffic

Results: almost no client complaints and open resolvers threat thwarted

Amplifying NTP Server Worldwide Count

Mod7 - Monlist

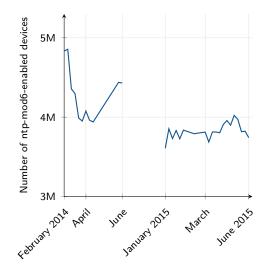
Operators already knowledgeable about amplification attacks: quick response


NTP problem easier to solve than the DNS one: upgrade to a **ntpd** version with safe default values, tweak configuration or block traffic with almost no side-effect

Team Cymru provides safe configuration templates: http://www.team-cymru.org/secure-ntp-template.html

French Amplifying NTP Server Count

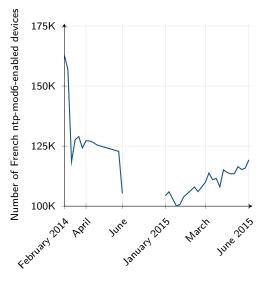
Mod7 - Monlist


France results similar to world-wide results

Spike in March 2015 from a new operator deployment that quickly handled the issue

Amplifying NTP Server Worldwide Count

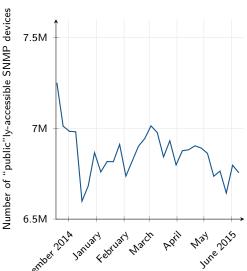
Control Messages (Mod6) - ReadVar


Mod6 messages amplify traffic but amplification factor is less dramatic

Mod6 is a RFC-standard message: **not only a ntpd issue**

French Amplifying NTP Server Count

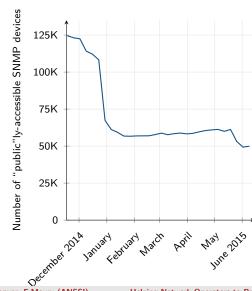
Control Messages (Mod6) - ReadVar


One AS responsible for 47 % of NTP mod6 amplifiers, in May 2014

This AS reduced its amplifier count by a third in June 2014

Two operators rolled out amplifiers during 2015

Responding SNMP Device Worldwide Count



More than 6,750,000 devices identified worldwide

There was no significant decrease of the number of devices since December, 2014

French Responding SNMP Device Count

Around 50 000 devices in France (0.7 % of the total number of devices) in June, 2015

The number of devices in France has fallen by nearly 60 % since the beginning of the process

This improvement is mainly due to the decrease of the number CPEs, but also network devices such as routers, switches...

June, 2015:

Almost 10 million devices identified by the scans

20 000 devices in France (0.2 %)

There was no significant decrease since the beginning of the year (both in the world and in France).

Mitigation Challenges

&

Effective Countermeasures

Challenge: a Wide Variety of Traffic Amplifiers

Exploitable Devices Breakout

- numerous CPEs (Internet gateways)
 - some are no longer supported, or partly hard-coded
 - support contact required for device replacement
- some pseudo-savvy customers
- various types of PE devices (routers, switches, firewalls)
- Voice over IP / Video conferencing devices
- multimedia devices

Mostly common sense countermeasures:

- Apply security updates
- Stick to configuration best current practices
- Rate-Limit traffic for protocols and services that can be exploited
- Block traffic coming from local services, when possible.
 For example, drop traffic that should not be seen on the Internet (SSDP)

Take Aways

- 1. Amplifiers are still a very real problem
- 2. New protocol regularly discovered vulnerable or specified!
- 3. Some scanning projects provide raw data to researchers and do-gooders
- 4. Tipping the balance can sometimes be done with the help of few operators
- 5. Fixing the damn things takes time = extensive work for operators
- 6. CERTs and governmental agencies can help (guidance, documentation, reports...)

Thank you for your attention.

Q&A

Contact: florian.maury @ssi.gouv.fr

Open Resolver Project: Captured Probe

Recursive Query

```
value {
  id: 17152 (0x4300)
 gr: false
 opcode: StandardQuery (0 = 0x0)
 aa: false
 tc: false
 rd: true
 ra: false
 z: 0 (0x0)
 rcode: NOERROR (0 = 0x0)
 qdcount: 1 (0x1)
  ancount: 0 (0x0)
 nscount: 0 (0x0)
 arcount: 0 (0x0)
 questions {
    questions[0] {
      qname: "f07b0a49.openresolverproject.org"
      qtype: A (1 = 0x1)
      qclass: IN (1 = 0x1)
    }
  answers {}
  authority answers {}
 additional_records {}
```

Open NTP Project: Mod7 Captured Probe

NTP Monlist Query (Mod7)

```
value {
  response: false
  more: false
  version: 2 (0x2)
  mode: 7 Reserved for private use (7 = 0x7)
  authenticated: false
  sequence: 0 (0x0)
  implementation: ntpd post IPv6 (3 = 0x3)
  reqcode: Return collected v1 monitor data (42 = 0x2a)
  errcode: No error (0 = 0x0)
  data_item_count: 0 (0x0)
  mbz: "0000" (4 bytes)
  data_item_len: 0 (0x0)
  data {}
```


Open NTP Project: Mod6 Captured Probe

NTP Readvar Query (Mod6)

```
value {
 null magic: 0 (0x0)
 version: 2 (0x2)
 mode: 6 NTP control message (6 = 0x6)
 response: false
 error: false
 more: false
 opcode: Read variables command/response (2 = 0x2)
 sequence: 1 (0x1)
 unparsed_status: 0000 (2 bytes)
 association_id {
    association id: 0 (0x0)
 offset: 0 (0x0)
 len: 0 (0x0)
 data {
    VariablesRead: "" (0 byte)
 padding: "" (0 byte)
```


Open SNMP Project: Captured Probes (1)

GetBulkRequest

```
###[ SNMP ]###
  version = <ASN1_INTEGER[1L]>
  community = <ASN1_STRING['public']>
  \PDU
   |###| SNMPbulk | | ###
                = <ASN1_INTEGER[60461639L]>
      id
     non_repeaters= <ASN1_INTEGER[OL]>
     max_repetitions= <ASN1_INTEGER[10L]>
      \varbindlist\
       |###[ SNMPvarbind ]###
          oid = <ASN1_OID['.1.3.6.1']>
          value = <ASN1 NULL[OL]>
```


Open SNMP Project: Captured Probes (2)

GetNextRequest

```
###[ SNMP ]###
 version = <ASN1_INTEGER[OL]>
 community = <ASN1 STRING['public']>
 \PDU
   = <ASN1 INTEGER[2122146261L]>
     id
     error = <ASN1 INTEGER[OL]>
     error index= <ASN1 INTEGER[OL]>
     \varbindlist\
      |###[ SNMPvarbind ]###
         oid = <ASN1_OID['.1.3.6.1']>
         value = <ASN1 NULL[OL]>
```


Open SSDP Project: Captured Probe

ssdp:discover

M-SEARCH * HTTP/1.1

Host:239.255.255.250:1900

ST:ssdp:all

Man: "ssdp:discover"

MX:3