Network Automation:
Ansible 101

RIPE 71 - November 16™, 2015

Bronwyn Lewis and Matt Peterson

Our assumptions

=> New to the world of “DevOps”

=> No prior Ansible knowledge

Not within scope:
=> Understand all encompassing
DevOps fanaticism

=> Automate yourself out of job

Agenda

Introduction Tutorial
=> Tutorial dependencies => Ansible intro & concepts
=> Introductions => Configuration templating

= DevOps intro - Homework, next steps

Tutorial prerequisites

http://git.io/vZKZH

http://git.io/vZKZH
http://git.io/vZKZH

Knowledge

1. basic familiarity with the command line

2. use of a command line text editor (e.g. vim or nano)

http://git.io/vZKZH

http://www.fastcolabs.com/3037629/why-vim-an-80s-text-editor-is-still-the-ui-of-choice-for-power-users

Environment

Officially supported! Not supported, but c
can work (Cygwin)

19
"
¢ af

http://git.io/VZKZH

Virtual environment

http://git.io/vZKZH

Packages

Essentially...

@ python o

http://git.io/vZKZH

What if | don’t have any of that...

Use the command line?
Use a text editor?

You can still do most of this.

Introductions

who1s Bronwyn Lewis

PCH

Packet Clearing House

Engineer @ Packet Clearing House
Wearer of many hats (provisioning,
network, systems, automation)
Background in operations, project
management, & international affairs

whois Matt Peterson

cumulus’

e Office of the CTO @ Cumulus Networks

o Network & systems engineer / architect for
15+ years

e Held enable @ Square, Tumblr, Burning
Man, SFMIX

Why network
automation?

Trending data

- A8\
NANOG Topics A
F LY
=== Automation —— IPvB \
N / B
75 Fo N / \

— 4
/ \ /;
b

| ¥

I

25 /

f

2000~ 2002 2004 2006 2008 2010
2{}9;1/ 2003 2005 2007 2099/ \2_911

source: http://nanog.org/archives/presentations ... query “ipv6”

Trending data

NANOG Topics F N
—=— Automation —— IPv6 d \
L
F0000 A -
7.5

2000 T

B 20000 |
/ 13006 |
X 1000

SO0 F

25 / (i} ol 0f 07 05 09 10 11 12 13 14 13

s 2E|'Ell'.211—JJ 2002 2004 2006 2008 2010 2012 2014
2{}9;1/ 2003 2005 2007 ZDE*Q/ \2_(31 1 2{}}-3

source: http://nanog.org/archives/presentations ... query “ipv6” and http://bgp.potaroo.net/

Observations

International ISP (tier 2) International ISP (tier 1) National MSO
Source of truth Database Database, CSV Many, reconciliation ...
Customer turn-up Manual Automated Automated
Infrastructure Route maps + lots hand tuning Automated Automated

Scripts for new, lots of hand
Peering turn-up tuning Automated Automated
SWIP / rwhois Triggered script Automated Automated
DNS records Automated nightly script Automated Automated

Monitoring Scripts, based on importance Vendor & home grown Vendor & home grown

Got {Net}DevOps?

An industry In transition

Or... is your job in jeopardy?

RAND
MENALLY

A Incident

Exit
AMERICA'S #1

In San Francisco center lane blocked on US-101 NB at
3rd St/Bayshore Blvd
77a-778 | Nall Ave
ROAD ATLAS i

v N
i Castro,
i “ Bemal Helghits
Lakeshore

Visitaciof palley

oL San Francisco Bay

I
>)
\Sauﬂ(sdn
\{ranclsco

8an Bruino

|
Pacifica
4
0
Paciicd
acificalSkatepark

oy McNee Ranch
State Park

Mogtara

fospgeach

UNITED STATES
CANADA

MEXICO

DevOps

e Unite people and {organization appropriate} methods
o Typically Developers & Operations staff
o Shared service(s) availability responsibility

e Not a specific software program, license, certification

{Net}DevOps

Leverage common DevOps tenants within Networking
Configuration management

Infrastructure as code

Reactive to infrastructure as a whole

Consistency (sometimes viewed as transparency)

Not a DevOps talk

e DevOps Kung Fu
https://qgithub.com/chef/devops-kungfu

e Phoenix Project / IT Revolution
http://itrevolution.com/

e DevOps Cafe podcast
http://devopscafe.org/

https://github.com/chef/devops-kungfu
http://itrevolution.com/
http://devopscafe.org/
http://devopscafe.org/

Automation Tools

while true ; do cat ~/.history ; done

Automation frameworks aren’t new

Expect (1990)

CFEnNngine (1993)

Puppet (2005)
NETCONF (2006)
OpenConfig (2014)

Lots of homegrown tools

And much, much more...

History repeating itself

e Pigeonhole pack - Tcl, SLAX, NETCONF/Yang
o Limited development community (excl. prof. services)
o NOS specific implementation and/or niche language

e (LI (scraping) & SNMP still the norm...
o Approachable from many scripting languages
o An “API” where faults are well understood

Lots of compute options

;\PUP et @SALTSTACK

FEngine &z @

.. Or write your own? CH EF ANSIBLE

What’s great about today’s
{compute automation} tools?

Technical Benefits Other Benefits
- procedural - open source (majority)
- repeatable - enterprise support

- idempotent - community

Abstraction

instructions:
what: update pkgs
where: myServerl, myServer5
when: 23.00UTC

" reference:
pkgs: openssh, apache

Signalling

agent
software installed on remote
hardware to interface with

agent’less

no specific software installed on
remote hardware

How Puppet® works

/:\ . /‘;\(— (agent)

= < B

controlhost © remote host(s)
(master) (client)

*just one example

How Ansible works

localhost remote host(s)

*default assumption, unless module
exists for target host OS

(But we’re running it locally.)

@ python

localhost

So, why did we pick Ansible?

agent’less

low risk (run it locally)
. small investment

. easy to learn

Terminology

WARNING!

Visually boring, but
iImportant information
packed slides ahead.

(Sorry.)

YAML

EXAMPLE DATA FILE 1
e Human readable data oles:
format / alternative to XML _ { who: dev, name: Ian }
- { who: noc, name: Alice }
e More powerful than CSV
o Data can imply it’s a list,

Integer, string, etc. roles:
noc:

name: Alice
dev:

name: Ian

EXAMPLE DATA FILE 2

e Filename extension .yml

Jinja2

EXAMPLE TEMPLATE e Python template engine
e Enumerates files using
Employees .
{ for a,b in roles } variable data o
Role: { item.a } e Supports conditionals:
Name: { item.b } o If statements
{ endfor }
o Loops
o Piping

e Ansible standard file
extension . j2

EXAMPLE HOSTS LIST

[dev]
e Group host addresses, test-switchl mgmt_ip=10.1.10.1
assign names, specify 100.0.0.42
variables, etc. dev-router4
e Default is /etc/ansible/hosts [prod]

o can override this easily mywebsite.com
172.16.0.56 name=dev42.prod

172.16.0.17

Playbooks

- name: Generate configs

hosts: localhost e Specifies execution

gather_facts: no e Single or multiple OK
e You can write all tasks and
roles: vars in a playbook...

- router
_ switch o ... but not recommended

EXAMPLE SYSTEM FACTS
e (Gathers information on the

remote hOSt(S) ::an51b1§_ar'ch1tectur'e":
: x86_64",
o Hardware, OS, uptime, "ansible_bios_date":

MAC address & more "99/20/2012",
e You can use this info like a ansible_bios_version™:
. . "6.00",
regular variable data point

Inventory

[EXAMPLE DIRECTORY/FILE ¢ AIIOV\{S_ you to p_ass IN
STRUCTURE] specific data with

different playbooks

myplaybook.yml e (Can specify hosts,

roles
inventory group vars, and host-
hosts specific vars
group_vars e (Can be accessed
sites.yml

across multiple roles

Roles

e A built-in structure for
compartmentalizing

e Roles make it easy /
clean to manage
execution

e Makes scaling and
collaboration easier!

[EXAMPLE DIRECTORY/FILE
STRUCTURE]

ansible
myplaybook.yml
roles
router
tasks
templates
switch
tasks

Hands-on: config generation

A CAUTION

Q Safety

W) |glasses
U required

General outline

Inventory + Roles
Variables
Templates

IP Address Filter
Tasks

Hosts

Playbook

Hello world

— inventory
| L— hosts
— playbook.yml
L— roles

L— hello

— tasks
| — main.yml
— templates
| “— hello.j2
L— wvars

L— main.yml

Hello world
(before)

= hello_world git:(master) ansible-playbook -i inventory playbook.yml

PLAY [Hello world] *####kssksssskrkkrbkikbbbbhikiibiiiikihbbbhibbbihhikiiiiihk

TASK: [hello | Verify compiled directory exists] *¥¥*¥kkkikrikririiirirrrrrrees
changed: [localhost]

TASK: [hello | Generate "hello"] **kkkkikdkbkkikkkkibithibhbbhbhiihihihhihihs
changed: [localhost] => (item={'name': 'world', 'number': 1})
changed: [localhost] => (item={"'name': "RIPE71', 'number': 2})

PLAY RECAP #*®#¥ddidioiiiiikkkkiiiiiiiikiddkikiiiiibikikkkidiiiiihikk ik ki

localhost : ok=2 changed=2 unreachable=0 failed=0

— inventory

I L— hosts

— output

I — hello-1.txt
| L— hello-2.txt
— playbook.yml
L— roles

L— hello
— tasks
| — main.,yml
— templates
| — hello.j2
L— wvars
L— main.yml

Hello world
(after)

Structure

— myplaybook.yml
— inventory

| — group vars

L — main.yml

| | — sites.yml e Lots of ways to structure
| hosts o Use roles?

roles .

— router o Use an inventory?

I }— tasks o Global, group, host variables?

main.ym . .

| }— templates e Depends on your situation

| | L— templatel.j2 ¢ [NO “right” way

| L — vars

|

L switch

Reference files

Copy these from workspace/reference/

config1: we’ll use this as our 1st template

config2: we’ll use this as our 2nd template
config1-dhcp: advanced example template
config2-dhcp: advanced example template
ipaddress: RFC 5737 IP addresses (for demo/docs)
variables: we’ll use these are our demo vars

Inventory + roles

e Inventory is an easy way to share variables
across roles, as well as managing hosts & host-
specific variables

e Roles make managing multiple templates and
sets of tasks easier by compartmentalizing them

|
Variables

e Variables can be formatted individually, as a flat
list, as a dictionary, or as an array
e Specific formatting can vary

/A Formatting impacts how you pass variables into
templates and tasks — be careful here! A\

Templates

e You can template anything!

e Lots of neat advanced features, including:
o If, when, and for statements/loops
o Variable manipulation via filters

|
|P address filter

e The Jinja2 ipaddr () filter is included in Ansible
as of version 1.9

e Provides an interface to the netaddr Python
package; does a lot of neat things including:
o subnet manipulation
o address validation
o address conversion
o MAC address formatting

https://netaddr.readthedocs.org/en/latest/

Tasks

e Procedural list of actions to execute, which

combines templates and vars
e (Conditions can be included, and are based on

vars (i.e., only do X when Y is present)

Hosts

e \What host we should be running the tasks on -
normally this would be a remote host, but for us:

localhost

Playbook

e Brings it together: ~ pname: Create files

o Hosts
hosts: localhost
o Roles .
connection: local
m [asks
gather facts: no
m Templates —
o Variables

roles:
— router

e And executes!

|
Running a play

[command | [flag] [dir] [playbook]

| b l

ansible-playbook -i inventory myplaybook.yml

You’ve got configs!

And If it didn’t work...

Common issues: ' /\$/\

e Missing packages? w

e Missing variables? e

e Formatting weirdness? KEEP

o Typos? CALM
AND

Ansible can provide clues. START

DEBUGGING

Ansible Debugging 101

Common Ansible debugging issues include:

One or more undefined variables: 'dict object'
has no attribute 'hostname'

One or more undefined variables: 'hostname' is
undefined

ERROR: Syntax Error while loading YAML script

More ipaddr & jinja2 fun

e |et'stry some loops!
o multiple interfaces

e And add some logic!
o if internal, enable cdp

e And do some |IP address manipulation!
o configure dhcp

Next steps

Deploy configs to your equipment
o NAPALM (NANOG64) multi-NOS
(EOS, JunOS, I0S-XR, FortiOS)
o 0S-specific modules: NX-OS,
JunOS, Cumulus, Comware, ...

Learn more Ansible

' Learn (a little) Python
o Custom filters/modules

https://github.com/spotify/napalm
https://www.nanog.org/meetings/abstract?id=2588
https://github.com/jedelman8/nxos-ansible
https://github.com/Juniper/ansible-junos-stdlib
https://github.com/CumulusNetworks/cumulus-linux-ansible-modules
https://github.com/CaptTofu/ansible-modules-extras/tree/features/hp_switch
https://github.com/Juniper/ansible-junos-stdlib

Next steps (example deployment)

tasks:

- name: “Compile templates”
template: src=templates/routers.j2
dest=configs/{{ inventory hostname }}.cfg

- name: “Deploy configuration”
install config:
host={{ inventory hostname }}
file=configs/{{ inventory hostname }}.cfg

Homework

High returns, low barrier effort
o Template your configs
o NMS or monitoring systems

Ratify a source of truth
o Database, IPAM, Rancid,
spreadsheet... choose one!

Prototype outside of production
o VM'’s of your HW appliances

'.,5'.

Ansible

Up & Running

AUTOMATING CONFIGURATION MANAGEMENT

AND DEPLOYMENT THE EASY WAY

Some resources

ISP &

Ansible
fo

-
> i

blogs/sites

https://blog.tylerc.me/

https://pynet.twb-tech.com/

http://jedelman.com/

http://packetpushers.net/

http://keepingitclassless.net/

[E| stackoverflow
... and more!

https://blog.tylerc.me/
https://blog.tylerc.me/
https://pynet.twb-tech.com/
https://pynet.twb-tech.com/
http://jedelman.com/
http://jedelman.com/
http://packetpushers.net/
http://packetpushers.net/
http://keepingitclassless.net/
http://keepingitclassless.net/

The future...

Maybe an Ansible 201 tutorial...?

Advanced templating techniques

Parsing existing configs

Dynamic inventory & advanced variable management
Interacting w/ network devices

Using Ansible gathered Facts

Remember: this Is an investment

1. This isn’t a panacea/cure-all

2. It takes time - start small and be iterative in effort

3. Don’t get discouraged

Give us feedback!

1. Come talk to us (here all week!)
2. Email or tweet us

me@bronwynlewis.com @bronwyn
matt@peterson.org @dorkmatt

mailto:me@bronwynlewis.com
mailto:me@bronwynlewis.com
mailto:me@bronwynlewis.com
mailto:me@bronwynlewis.com
mailto:matt@peterson.org
mailto:matt@peterson.org
mailto:matt@peterson.org
mailto:matt@peterson.org

