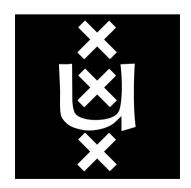
### Discovery Method for a Validating Stub Resolver


# Xavier Torrent Gorjón

xavier.torrentgorjon@os3.nl / sendotux@gmail.com

Final Thesis at SNE MSc

Supervisor: Willem Toorop (NLnet Labs) willem@nlnetlabs.nl







#### whoami

- Former student of the SNE Msc at the Universiteit van Amsterdam.
- Did this research project as my final thesis, working with NLnet Labs.

### **Motivation**

When things go wrong, sometimes fingers are pointed in the wrong direction. Seems to happen a lot with DNSSEC.

- NASA.gov blocked by Comcast when implementing DNSSEC (2012)(bit.ly/1GOrHxR).
- .gov zones not resolving due DNSSEC misconfiguration (2014) (bit.ly/1gbP7aP).
- HBO NOW blocked due invalid signatures (2015)(bit.ly/1GoasVi).

## **Objectives**

- Measure the current state of DNSSEC deployment, from different points of view.
- Can we improve it without drastic changes?



### **Tools used**

- Python scripts
- Classes provided by NLnet Labs to ease the task of parsing DNS data.
- The RIPE ATLAS probes!



## Study case #1 results

- The vast majority of probes queried could successfully perform DNS queries (95%+).
- However, (regular) DNSSEC queries were successful only in 64% of the cases:

| Received RR       | Percentage |
|-------------------|------------|
| No RR             | 7.94%      |
| DNSKEY (x2)       | 28.34%     |
| DNSKEY (x2)+RRSIG | 63.71%     |

## **Study case #1 results**

 Things got worse when querying non-existing domains (both NSEC and NSEC3):

| Received RR            | Percentage |
|------------------------|------------|
| No RR                  | 22.27%     |
| Only SOA               | 21.49%     |
| SOA + NSEC + RRSIG(x2) | 56.23%     |

| Received RR                | Percentage |
|----------------------------|------------|
| No RR                      | 12.44%     |
| Only SOA                   | 27.68%     |
| SOA + RRSIG                | 3.62%      |
| SOA + NSEC3(x2) + RSIG(x3) | 0.58%      |
| SOA + NSEC3(x3) + RSIG(x3) | 55.67%     |

## Study case #1 results

 With wildcard domain queries, retrieved responses were valid only in 40% of the cases.



## Study case #1 conclusions

- Seems as if, the harder the query, the worse the results. But who is the culprit?
- We attempted to run these queries again, but using the probes' ISP resolver, instead of the resolver predefined on them.

# Study case #2 definition

User Home Router Forwarding DNS Forwarding DNS ISP Recursive Resolver (DNSSEC aware)

Initial Query

## **Study case #2 results**

- The majority of probes could query their ISP resolvers directly.
- A small percentage didn't manage to do so.
- But, did this change affect the results?

# Study case #2 results

- The number of successful DNSSEC queries raised from 64% to almost 80%.
- Valid NXDOMAIN answers increased from 56% to 75%.
- Wildcard queries were properly answered in 60% of the cases, from the previous 40%.
- All around, we observed a 20 points increase on the successful results.

## Study case #2 conclusions

- The benefits of directly querying the ISP resolvers were quite noticeable and consistent.
- Individual reasons for this may vary, but we attribute this difference, mostly, to cheap

hardware at the end points (home routers).



#### Other remarks

 Thanks to the people working at RIPE ATLAS, we got a new feature within 2 weeks!

```
Subject Re: Feature request: set CD bit on atlas DNS measurements

To Willem Toorop ☆, Me <xavier.torrentgorjon@os3.nl>☆

Cc Robert Kisteleki <robert@ripe.net> ☆, Philip Homburg <philip.homburg@ripe.net> ☆,

Dear Willem,

As of today you can include the following parameter in the JSON definition:

"cd": true

This isn't officially documented yet, but once it is working for you I will also document it and we will consider adding it to the web UI.

Kind regards, Chris
```

#### Other remarks

- Querying dnssec-failed.org., with and without the CD bit, we observed that only 26% of the resolvers were validating the data.
- Additionally, we saw no substantial differences on the resolving rate with probes that had more than one resolver defined.

# **Defining a Discovery Method**

- In the best case scenario, the probe will get a proper answer from its default resolvers.
- When that fails, querying the ISP's DNS server directly helps with the issue in a considerable number of cases.
- Users can as well attempt to query public DNS servers (p.e. Google, among others)
- As a last resort possibility, do full recursion from a stub resolver.

## **Conclusions & wrapping up**

- As with many other "new" protocols (hello IPv6), the adoption of DNSSEC is really slow.
- Until things go wrong, users do not really experiment a benefit, so they do not care.
- It is quite difficult to spot where the errors happen in each individual case.

# Q&A

Thanks for your attention!