

Impact of Carrier-Grade NAT on Web Browsing

- Enrico Bocchi
- Ali Safari Khatouni
- Stefano Traverso
- Alessandro Finamore

- Valeria Di Gennaro
- Marco Mellia
- Maurizio Munafò
- Dario Rossi

Background

In February 2011, Internet Assigned Numbers Authority (IANA) ran out of IPv4 /8 unallocated networks

- > After exhaustion, IANA and RIRs allowed IPv4 transfers
- > Transfer policies are based on economics and trading
- IPv4 are now subject of a growing market
 - APNIC market +220%, RIPE market +600% in 2014[1]
 - **10.50**\$/**IP** in a /24 block (7.75\$/**IP** in a /20 block)
 - ARIN has 12 Registered Transfers Facilitators http://www.ipv4auctions.com, http://www.iptrading.com/, ...

ISPs and organizations running large IP networks are committed to huge economical investments for addresses

Background

What about IPv6?

- Requires a significant investment of resources (hw/sw, training, ...)
- Poses incompatibility issues with IPv4 (dual stack networks, tunnels)
- ➤ Deployment is still lagging [2]: ~6% of users access Google over IPv6

Hotelling Rule

The transition from an exhaustible resource to a new one will not occur until the price of the current resource exceeds the cost of its replacement

Workaround

ISPs are deploying Carrier-Grade NAT

- Reserved pool of addresses 100.64.0.0/10 IETF RFC 6598
- Implemented through NAT444

[2] http://www.worldipv6launch.org/measurements/https://labs.ripe.net/Members/gih/counting-ipv6-in-the-dns

NAT at a glance - Traditional NAT44

NAT at a glance - Traditional NAT44

...and Carrier-Grade NAT - NAT444

Carrier-Grade NAT (CGN)

The deployment of CGN has some implications:

- Breaks the end-to-end IP connectivity
- Introduces reachability problems for NAT-ted devices
 - Need of successful NAT traversal techniques
 - Updates of non-NAT friendly applications
- Mandates the network keeps the state of the connections
- Impacts negatively lawful intercept
- May have performance implications

Our investigation goals

- Does CGN impact users' browsing experience?
- For users, is there any benefit in having a public IP?
- For ISPs, how many IPs would CGN let them save?

Answer with measurements

Methodology

Methodology roadmap

Large scale passive measurement

- A real ISP deployment
- Customers are offered public or private address
- Traffic monitored to extract performance metrics

Leverage statistical tools

- Collect and compare empirical probability distributions
- Check and quantify eventual differences

Focus on

Web traffic and performance

Monitoring Scenario

Dataset

- > 1 month of real traffic recorded, October 2014
- > 17,000 household monitored, residential customers
- ➤ 1.7Billion TCP flows, 0.7Billion HTTP requests

http://tstat.polito.it

Monitoring Scenario

Client

Monitoring Scenario

Assessing the Impact of CGN

- > Consider 9 performance metrics
- > Measure distinct probability distributions for each metric
 - > Coupled distributions for clients with private or public address

Jensen-Shannon Divergence

- Quantify the difference between a pair of probability distributions
- Based on the Kullback-Leibler divergence
 - + Symmetric
 - + Bounded to finite value $[0, \ln(2)]$ $JS \downarrow div = \sum i \uparrow m \{ 1/2 \ p \downarrow i \ln(p \downarrow i / 1/2 \ p \downarrow i + 1/2 \ q \downarrow i \) + 1/2 \ q \downarrow i \ln(q \downarrow i / 1/2 \ p \downarrow i + 1/2 \ q \downarrow i \)$

with p_i and q_i being the samples of the two distributions to compare

Jensen-Shannon Calibration

Need of a **threshold** to discriminate between **significant** and **negligible** differences

Example calibration:

- Negexp CDF
- $> \lambda_0 = 1$, fixed
- \triangleright λ_1 varies $[1 \div 8]$

Divergence metrics, reloaded

- JS just one of several possibilities
- Total Variation (TV) or Hellinger (H) also equivalent

(a) Statistical distance measures and dependency relationships.

(b) Computed distance values with $\lambda_1=2$. Notice Separation and Wasserstein reaching the upper bound.

(c) Computed distance values with λ_1 =8. Notice Kolmogorov and Discrepancy being non-responsive.

Figure .16: Distance measures overview and computed values for negative exponential distributions.

Performance Analysis

Does CGN impact users' browsing experience?

Performance Metrics – TWHT

1. Three Way Handshake Time (TWHT)

- > Any remote server (all)
- > iTunes contents (phobos.apple.com Akamai)
- Google Search (Google.com)

Service	JS Div
All	0.002
Phobos	0.016
Google.com	0.010

Performance Metrics – Throughput

1. Three Way Handshake Time (TWHT)

2. Download Throughput

- > Any remote server (all)
- > iTunes contents (phobos.apple.com Akamai)
- > Tumblr Blogging Platform (*Tumblr.com*)

Service	JS Div
All	0.001
Phobos	0.022
Tumblr	0.021

Performance Metrics – Number of Hops

- 1. Three Way Handshake Time (TWHT)
- 2. Download Throughput
- 3. Number of Hops
 - > Any remote server (all)
 - > iTunes contents (phobos.apple.com Akamai)
 - Google Search (Google.com)

Service	JS Div
All	0.223
Phobos	0.689
Google.com	0.666

Jensen-Shannon Results

Three intervals identified

> Significant differences $JS_{div} \geq 0.1$

> Noticeable differences $0.02 \le JS_{div} < 0.1$

➤ Negligible differences $JS_{div} < 0.02$

Metric	Any Server	Google.com	Phobos.com
Number of Hops	0.223	0.666	0.689
Latency (RTT)	0.001	0.006	0.007

Establi

HTT Thr

Nui

Ou¹

Dup

Our investigation goal

Does CGN impact users' browsing experience?

We observe no significant impact (for these KPI)

Is there any benefit in having a private IP?

Benefits of having a Public / Private IP address

For users, is there any benefit in having a public IP?

Active Servers

Does the customer need IPv4 reachability?

➤ Is there any ISP customer running a server at home?

Detection technique

- Look for customers answering at least one incoming connection
 - Protocols: HTTP(S), IMAP(S), POP(S), SMTP(S)

Days

Only 0.6% of customers runs servers at home

Unsolicited Traffic

What about unsolicited traffic?

How many home routers are victims of port-/net- scans?

- Compile a list of potential attackers
 - Remote hosts making unsuccesful TCP connection attempts to more than 50 IPs in the PoP,
 - Private addresses only reachable by attackers within the ISP network
- Focus on destination ports with well-known services or vulnerabilities

Unsolicited Traffic

Destination	Description	Percentage of victims in PoP	
Port		PRI	PUB
80	HTTP	1.8	78.5
443	HTTP Secure (HTTPS)	0.1	78.9
143	Internet Message Access Protocol (IMAP)	<0.1	79.3
995	Post Office Protocol (POP3 over SSL)	<0.1	79.2
25	Simple Mail Transfer Protocol (SMTP)	0.1	79.0
22			

135

3389

1433

3306

445

Our investigation goals

- Does CGN impact users' browsing experience?
- Is there any benefit in having a private IP?

0.6% of customers needs IPv4 reachability

Public IPs are up to 800x more likely to be victim of attacks

CG-NAT Dimensioning and Saving Estimation

For ISPs, how many IPs would CGN let them save?

How to properly dimension CGN?

How many households are concurrently active?

- Assume an idle timer of 5min at the CGN
- Active those who generate one connection in the last 5min

What if Port Address Translation (PAT)?

What if Port Address Translation (PAT)?

Conclusions

- Goal: assess the impact of CGN on users' web browsing
 - Large scale passive measurements
 - Multiple performance metrics considered
 - > Jensen-Shannon to pinpoint relevant statistical differences
- CGN does not harm users' web browsing
 - Results show negligible impact
 - Customers with private address get same performance as customers with public addresses
 - > Positive side-effects against unsolicited traffic
- > Saving in terms of \$\$\$ could be significant (15x)
 - Still, temporary patch (IPv6 anyone?)

