Building a small Data Centre

Cause we're not all Facebook, Google, Amazon, Microsoft...

Karl Brumund, Dyn RIPE71

Dyn

- what we do
 - DNS, email, Internet Intelligence
- from where
 - 28 sites, 100s of probes, clouds
 - 4 core sites
 - building regional core sites in EU and AP
- what this talk is about
 - \circ new core site network

First what not to do

it was a learning experience...

A learning experience is one of those things that say, You know that thing you just did? Don't do that.

(Douglas Adams)

Design, version 1.0 Physical

- CLOS design
- redundancy
- lots of bandwidth
- looks good
- buy
- install
- configure
- what could go wrong?

Design, version 1.0

- MPLS is great for everything
- let's use MPLS VPNs
 - \circ $\,$ ToR switches are PEs $\,$
- 10G ToR switch with MPLS •
- 10G ToR switch with 6VPE
- "IPv6 wasn't a requirement."

Legacy IP Only

This product does not support the current generation of the Internet Protocol, IPv6.

reboot time

- let's start over
- this time lets engineer it

Define the Problem

- legacy DCs were good, but didn't scale
 Bandwidth, Redundancy, Security
- legacy servers & apps = more brownfield than green
- *but* we're not building DCs with 1000s of servers
 - want it good, fast and cheap **enough**
 - need 20 racks now, 200 tomorrow

Get Requirements

- good
 - scalable and supportable by existing teams
 - standard protocols; not proprietary
- fast
- cheap
 - \circ not too expensive
- fits us
 - $\circ~$ can't move everything to VMs or overlay today
- just works
 - \circ $\,$ so I'm not paged at 3am $\,$

Things we had to figure out

- 1. Routing
 - actually make it work this time, including IPv6
- 2. Security
 - let's do better
- 3. Service Mobility
 - be able to move/upgrade instances easily

Design, version 2.0 Logical

- we still like layer 3, don't want layer 2
 service mobility?
- not everything on the Internet please
 - need multiple routing tables
 - VRF-lite/virtual-routers can work
 - multiple IGP/BGP
 - RIB/FIB scaling
- we're still not ready for an overlay network

How many routing tables?

- 1. Internet accessible (PUBLIC)
- 2. not Internet accessible (PRIVATE)
- 3. load-balanced servers (LB)
- 4. between sites (INTERSITE)
- 5. test, isolated from Production (QA)
- 6. CI pipeline common systems (COM_SYS)

eBGP or iBGP?

- iBGP (+IGP) works ok for us
 - can use RRs to scale
 - staff understand this model
- eBGP session count a concern
 - multiple routing tables
 - really cheap L3 spines (Design 1.0 reuse)
 - eBGP might work as well, just didn't try it
 - ref: NANOG55, Microsoft, Lapukhov.pdf

What IGP?

- OSPFv2/v3 or OSPFv3 or IS-IS
 - we picked OSPFv2/v3
 - o any choice would have worked
- draft-ietf-v6ops-design-choices-08

Route Exchange

- from one instance to another
- route-exchange can become confusing fast
- BGP communities make it manageable
- keep it as simple as possible
- mostly on spines for us

Routing Details

- pair of ToR switches = blackholing potential
 - RR can only send 1 route to spine, picks ToRa
 - breaks when spine ToRa link is down
 - BGP next-hop = per-rack lo0 on both ToRa/b

Anycast ECMP

- ECMP for anycast IPs in multiple racks
 - spines only get one best route from RRs
 - would send all traffic to a single rack
 - we really only have a few anycast routes
 - put them into OSPF! :)
 - instances announce "ANYCAST" community

spine route table

- iBGP route from RR = Rack 101 only
- OSPF route = Rack 101, Rack 210

Security

- legacy design had ACLs and firewalls
- network security is clearly a problem
- so get rid of the problem

No more security in the network

Security

- network moves packets, not filter them
- security directly on the instance (server or VM)
- service owner responsible for their own security
- blast radius limited to a single instance
- less network state

How we deploy security

- install base security when instance built
 - $\circ~$ ssh and monitoring, rest blocked
- service owners add the rules they need
 - CI pipeline makes this easy
- automated audits and verification
- needed to educate and convince service owners
 many meetings over many months

Service Mobility

- Layer 3 means per rack IP subnets
- moving an instance means renumbering interfaces
- what if the IP(s) of the service didn't change?
 - instances announce service IP(s)

Service IPs

- service IP(s) on dummy0
- exabgp announces service IP(s)
 - many applications work
 - some can't bind outbound
- seemed like a really good idea
- didn't go as smooth as hoped

Network Deployment

- ToR switches fully automated
 - trivial to add more as DC grows
 - any manual changes are overwritten
 - ref: NANOG63, Kipper, cvicente
- rest of network is semi-automated
 - partially controlled by Kipper
 - o partially manual, but being automated

What We Learned - Design

- A design documented in advance is good.
- A design that can be implemented is better.
- Design it right, not just easy.
- Validate as much as you can before you deploy.
- Integrating legacy into new is hard.
 Integrating legacy cruft is harder.
- Everything is YMMV.

What We Learned - Network

- Cheap L3 switches are great
 - beware limitations (RIB, FIB, TCAM, features)
- Multiple routing tables are a pain; a few is ok.
- Automation is your friend. Seriously. Do it!
- BGP communities make routing scalable and sane.
- There is no such thing as partially in production.
- Staff experience levels are really important.

What We Learned - Security

- Moving security to instances was the right decision.
- Commercial solutions to deploy and audit suck.
 - IPv6 support is lacking. Hello vendors?
 - $\circ~$ We rolled our own because we had to.
- Many service owners don't know flows of their code.
 o never had to care before; network managed it
 - o service owners now own their security

What We Learned - Users

- People don't like change.
- People really hate change if they have to do more.
- Need to be involved with dev squads to help them deploy properly into new network.
- Educating users on changes is as much work as building a network.
 a lot more

Summary

- Many different ways to build DCs and networks.
- This solution works for us. YMMV
- Our network moves bits to servers running apps delivering services. Our customers buy services.
- User, business, legacy >> network

Thank you

kbrumund@dyn.com

For more information on Dyn's services visit dyn.com

INTERNET PERFORMANCE. DELIVERED.

🕈 dyn.com 🛛 🕑 @dyn