UNIVERSITY OF TWENTE. RIPE71 - Bucharest, Romania

Scalable high-speed packet capture Using OpenFlow and Intel DPDK

Wouter de Vries

Who am I?

Wouter de Vries Ph.D. student

Design and Analysis of Communication Systems University of Twente

UNIVERSITY OF TWENTE.

Scalable high-speed packet capture

November 13, 2015 2 / 24

Introduction

We want to capture large-scale DDoS attacks without significant packet loss, why?

- Mitigation is hard
- In-depth analysis could provide valuable insights

Other uses of high-speed packet capture:

- Intrusion detection
- Monitoring (start your own NSA!)

The total bandwidth of The InternetTM is ever increasing.

The total bandwidth of The InternetTM is ever increasing.

Table: Cisco Visual Networking Index 2015

Year	2014	2015	2016	2017	2018	2019
PB per Month	59,8	72,4	88,4	109,0	135,5	168,0

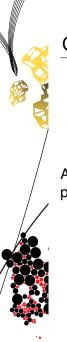
In order to analyze real-world traffic, the capture methods need to evolve. At speeds in excess of 10 Gbit/s things start to get difficult:

In order to analyze real-world traffic, the capture methods need to evolve.

At speeds in excess of 10 Gbit/s things start to get difficult:

▶ ≥ 14.8 million packets per second

In order to analyze real-world traffic, the capture methods need to evolve.


At speeds in excess of 10 Gbit/s things start to get difficult:

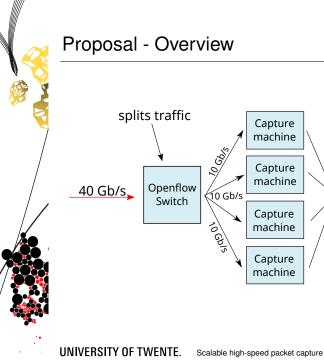
- ▶ ≥ 14.8 million packets per second
- Only a few clockcycles per packet
- ► Storing ≥1.25 Gigabytes per second

In order to analyze real-world traffic, the capture methods need to evolve.

At speeds in excess of 10 Gbit/s things start to get difficult:

- ▶ ≥ 14.8 million packets per second
- Only a few clockcycles per packet
- ► Storing ≥1.25 Gigabytes per second

Goal


A **scalable** system that is able to capture and generate packets at high speed (e.g. \geq 40 Gbit/s)

Proposal

 Use DPDK (Data Plane Development Kit) to maximize single machine performance.

Proposal

- Use DPDK (Data Plane Development Kit) to maximize single machine performance.
- Use OpenFlow-switches to distribute traffic over multiple machines

Recombine pcap-file

(offline)

Implementation - What is DPDK?

The **D**ata **P**lane **D**evelopment **K**it is a library for fast packet processing

Main features:

- Zero-Copy
- Fast buffers
- Designed for multicore

Zero-copy allows the network hardware to directly copy data to memory buffers using DMA

Implementation - What is DPDK?

The **D**ata **P**lane **D**evelopment **K**it is a library for fast packet processing

Main features:

- Zero-Copy
- Fast buffers
- Designed for multicore

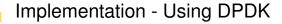
Fast and thread-safe implementations of (ring) buffers making development of multithreaded applications much easier

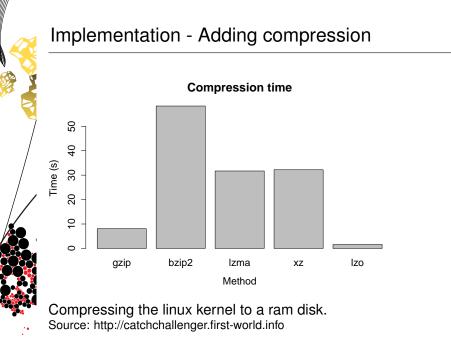
Implementation - What is DPDK?

The **D**ata **P**lane **D**evelopment **K**it is a library for fast packet processing

Main features:

- Zero-Copy
- Fast buffers
- Designed for multicore


Has been designed from the ground up to support multiple cores, each thread runs on its own core


UNIVERSITY OF TWENTE.

Scalable high-speed packet capture

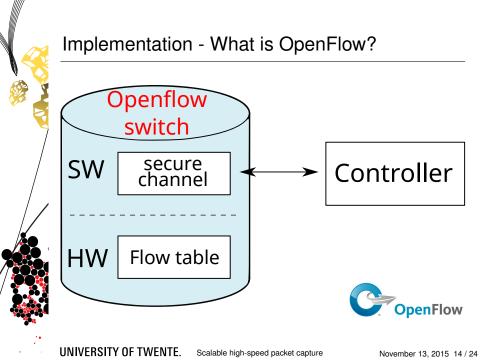
Capture 64-byte packets at 10 Gbit/s (1.25 GB/s or 1 DVD every 4 seconds) in PCAP-format on commodity hardware. What to do with all this data?

UNIVERSITY OF TWENTE. Scalable high-speed packet capture

Intermediate results

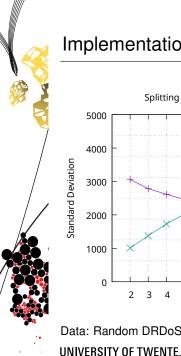
- Using compression specially crafted 64-byte packets can be captured at line-rate on a single conventional HDD using 3 cores
- Generating packets at line-rate (10 Gbit/s) is possible using a single core

Implementation - What is OpenFlow?

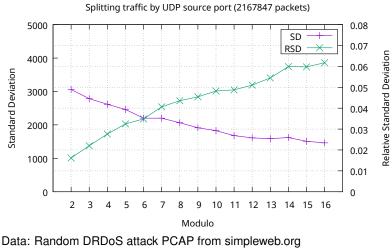

"OpenFlow allows direct access to and manipulation of the forwarding plane of network devices such as switches and routers"

- Open Networking Foundation

Scalable high-speed packet capture



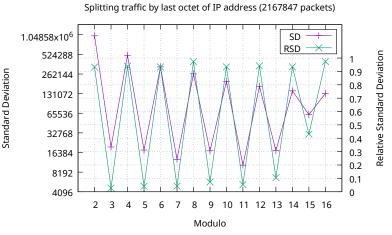
Implementation - OpenFlow


We need to define something that we split the traffic on. **Possible candidates:**

- Source port for TCP/UDP (allows mask on Open vSwitch)
- IP-address (allows mask)
- ► Equal-Cost Multi-Path (ECMP) routing algorithms

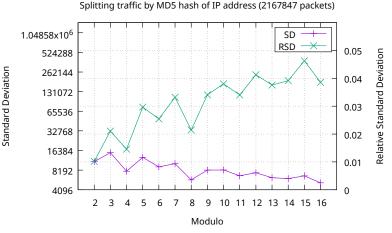
Implementation - UDP

Scalable high-speed packet capture


Implementation - Example flow table

Bitmask on last two bits of UDP source port

OFPST_FLOW reply (OF1.3) (x1d=0x2):									
cookie=0x0,	duration=1.478s,	table=0,	n_packets=0,	n_bytes=0,	udp,tp_src=0x1/0x3	actions=output:3			
cookie=0x0,	duration=1.469s,	table=0,	n_packets=0,	n_bytes=0,	udp,tp_src=0x0/0x3	actions=output:5			
cookie=0x0,	duration=1.474s,	table=0,	n_packets=0,	n_bytes=0,	udp,tp_src=0x3/0x3	actions=output:4			
cookie=0x0,	duration=1.483s,	table=0,	n_packets=0,	n_bytes=0,	udp,tp_src=0x2/0x3	actions=output:2			


Implementation - IP address

Data: Random DRDoS attack PCAP from simpleweb.org

- UNIVERSITY OF TWENTE.
- Scalable high-speed packet capture

Implementation - IP address

Data: Random DRDoS attack PCAP from simpleweb.org

- UNIVERSITY OF TWENTE.
- Scalable high-speed packet capture

Equal-Cost Multi-Path routing is used to balance traffic over multiple links that have the same cost.

- ECMP Algorithm is not defined by OpenFlow
- Result: ECMP implementation varies by vendor

The definition of ECMP is a great match to our problem

Current state

- For some types of traffic splitting is easier than others
- On-going work to find a generic way to balance flows
- ECMP is promising, depending on the implementation by the vendor

Conclusion

UNIVERSITY OF TWENTE.

- Using DPDK allows line-rate packet capture on 10 Gbit/s
- Using OpenFlow-compatible switches has the potential to scale the capture speed horizontally
- Combined, these two technologies allow us to capture 240 Gbit/s

Open-source

 DPDK-based packet capture tool (DPDKcap): https://github.com/woutifier/dpdkcap

Questions

Thank you for your attention!

Questions and/or comments are welcome!

UNIVERSITY OF TWENTE.

Scalable high-speed packet capture