Flow-based Detection of IPv6-specific Threats

RIPE71, Bucharest

Luuk Hendriks Design and Analysis of Communication Systems

UNIVERSITY OF TWENTE.

"Absence of evidence is no evidence of absence"

We don't have proper v6 security appliances

<==>

We don't see any threats on v6

<==>

We don't need to spend resources on this

USENIX WOOT '14 Workshop On Offensive Technologies:

IPv6 Security: Attacks and Countermeasures in a Nutshell,
Ullrich et al.:
42 threats, allmost all L3

We want ...

To define flow-level signatures of IPv6 L3-specific threats

in order to enable detection in a easily deployable, scalable fashion

We don't want ...

To turn our flow exporters into full-blown packet-based IDS/IPS/...

doing anything but exporting quality flow records

Almost everything we need is almost there almost-ish

IANA IPFIX Information Elements:
e0id31: flowLabelIPv6
e0id5: ipClassOfService (Traffic Class)
e0id139: icmpTypeCodelPv6

Q: how many of these fields were exported by our probe?

"we never have had such request yet"

- \$vendor support guy

Time to enjoy IPFIX

Currently focussing on exporting fragmentation information:

e785id401: v6fragNxtProto

e785id402: v6fragNxtSrc

e785id403: v6fragNxtDst

e785id404: v6fragMinOffset

Where to now?

Right now,
generate and test with synthetic attacks

Soon,
deploy online detection at two NRENs

In the long run,
characterize the v6 security landscape

Discussion

How v6-ready are your flow exporters?

What IPFIX Information Elements should we define and standardize?

Which other possible uses of these IEs can we think of?

Flow-based Detection of IPv6-specific Threats

As presented at RIPE71, Bucharest

Luuk Hendriks

luuk.hendriks@utwente.nl
IRC: dRiek/DriKE/dRk/dr<tab><tab><</pre>

UNIVERSITY OF TWENTE.